Job Description

Job Description

General Position Definition -

Finance & Data Operations Data Science Team is tasked with delivering tangible value to business units within Shell through data-driven decision making.
This position is part of Finance & Data Operations Data Science team delivering advanced analytics projects for different businesses within Shell. The individual will join a growing global data science organization spanning both on/offshore.
Incumbent is responsible for developing analytical models for projects collaborating with different business stakeholders & other partners and working across a range of technologies and tools.
The ideal candidate has strong background in quantitative skills (like statistics, mathematics, advanced computing, machine learning) and has applied those skills in solving real world problems across different businesses / functions.

Purpose -

  • Develops analytics models using specialized tools based on the business problem and data available
  • Identifies the right set of models and develops the right code / package to execute them
  • Evaluates the validity of the model (both scientifically as well as from a business perspective)
  • Support the Data Science Team Lead in design and execution of analytics projects
  • Work with Shell stakeholders and subject matter experts to complete tasks and deliverables on projects

Skills -Stakeholder Engagement Skills -

  • Working collaboratively across multiple sets of stakeholders – business SMEs, IT, Data teams, Analytics resources, etc. to deliver on project deliverables and tasks
  • Identify actionable insights that directly address challenges / opportunities
  • Articulate business insights and recommendations (based on model output) to respective stakeholders
  • Understanding business KPI's, frameworks and drivers for performance.

Requirements -

Industry / Functional Expertise -

  • Provide deep business expertise preferably Oil & Gas - Upstream or Downstream businesses. (If these are not available, willing to consider other industries that are similar or related - manufacturing, mining, power generation, etc.)functional expertise in any one or more of the following industry / functional areas
  • Manufacturing / Industrial: Equipment Failure prediction, Maintenance Scheduling & Optimization, Inventory optimization, Cost Diagnostics, Energy Management
  • Customer / Marketing – pricing analytics, churn prediction, cross-sell / up-sell, Market Basket Analysis, Product Recommendation, Marketing Mix Modeling, Campaign design and effectiveness testing, Network Modeling, Customer segmentation, propensity analysis, customer lifetime value, profitability analysis, Customer experience (incl. voice of customer), CRM, Loyalty program management,
  • Supply Chain / Spend: Demand & Supply Forecasting, Spend Analytics, Vendor Scoring, Pricing analysis (buy-side), product substitution analysis, product portfolio optimization, Tail spend analysis, logistics / network / route optimization, Contract Compliance
  • Functional Analytics: Order-to-cash, Procure-to-Pay, Record-to-Report, Tax (Direct & Indirect), Financial Risk and Assurance (controls and governance), Master Data Management, Inter-group / Intra-group
    Trading & Risk Management: Across Credit & Market Risk - Value at Risk (VAR), Back testing, Stress testing
  • Proficiency Level: Skill
  • Modeling and Technology Skills
  • Deep expertise in machine learning techniques (supervised and unsupervised) statistics / mathematics / operations research including (but not limited to):
  • Advanced Machine learning techniques: Decision Trees, Neural Networks, Deep Learning, Support Vector Machines, Clustering, Bayesian Networks, Reinforcement Learning, Feature Reduction / engineering,
  • Anomaly deduction, Natural Language Processing (incl. Theme deduction, sentiment analysis, Topic Modeling), Natural Language Generation
  • Statistics / Mathematics: Data Quality Analysis, Data identification, Hypothesis testing, Univariate / Multivariate Analysis, Cluster Analysis, Classification/PCA, Factor Analysis, Linear Modeling, Logit/Probit Model,
  • Affinity & Association, Time Series, DoE, distribution / probability theory
  • Typically, each role will look at one of two of the above skills – not all of them
  • Strong experience in specialized analytics tools and technologies (including, but not limited to)
  • SAS, Python, R, SPSS (preferably two out of 4)
  • Spotfire, Tableau, Qlickview
  • For Operations Research (AIMS, Cplex, Matlab)
  • Awareness of Data Bricks, Apache Spark, Hadoop
  • Awareness of Agile / Scrum ways of working
  • Identify the right modeling approach(es) for given scenario and articulate why the approach fits
  • Assess data availability and modeling feasibility
  • Review interpretation of models results
  • Evaluate model fit and based on business / function scenario
  • Proficiency Level: Skill-to-Mastery
  • Special Challenges
  • Rapid onboarding on projects, understanding analytics goal and working with ill-defined datasets
  • Communicating technical jargon in plain English to colleagues within Data Science team and outside
  • Virtual working with network of colleagues located throughout the globe
  • Dimensions
  • Support design and delivery of analytics projects, within or cutting across upstream and downstream business units in Shell

Experience -

  • 3+ years of relevant experience
  • Advanced university degree in Mathematics, Statistics, Engineering, Economics, Quantitative Finance, OR, etc.
  • Good interpersonal communication skills and influencing skills
  • Eagerness to learn and ability to work with limited supervision.

Job Type
  • Full Time
  • Full Time

Functional Area

Software Development

Industry

Oil/Gas/Power/Energy

Education Required

Not specified

Experience Required

3-5 years

Skills Required

Data Scientist